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STRENGTH CALCULATION FOR A BLADE AS AN ORTHOTROPIC PLATE

OF LINEARLY VARIABLE THICKNESS

UDC 628.23V. I. Solov’ev

A method of determining stresses in an orthotropic fan blade is proposed. Calculation results
are compared with those obtained by the engineering method and with experimental data. It is
shown that the stresses calculated with the use of the model proposed agree well with experi-
mental results.

One of the calculated performance and reliability criteria for the main functional structural elements of
machines is the static-strength safety factor [1]. The accuracy of its determination depends on the adequacy
of the model and the method of strength calculation.

One of the main functional elements of fans used to ventilate metro tunnels [2] is a blade made from
a composite material (DSV-4-R-2M press-material of quality “P”). This material is characterized by high
strength, high vibration resistance, high resistance to attack by corrosive media, and high workability and it
is relatively cheap.

Figure 1 shows the structure of the blade in three projections. For the stiffness and strength purposes,
the reinforcing element 1 (filler) is shaped like a bundle of elementary fiberglass filaments (d 6 11 µm) packed
in different directions. Phenolformaldehyde resin is used as a binder 2 (matrix).

The advantages of these blades over sheet metal blades are a smaller labor input upon production, a
smaller mass, higher corrosion resistance, and high aerodynamic performances.

Figure 2 shows the external contour of the fan blade 1 and its cross section 2 (ω is the angular velocity,
ϕ is the angle of slope of the middle surface of the blade to the plane of rotation, rb is the radius of the blade
base, 2b0 is the width of the blade base, h is the height of the blade, and Fx and Fy are the centrifugal-force
components).

Birger, Shorr, and Iosilevich [3] proposed a method of analyzing the turbomachinery parts, including
turbine and compressor blades; the geometry of these blades and the fixing and loading conditions for them
differ from those for fan blades.

In turbine blades of constant cross section, the maximum stress σmax caused by centrifugal forces
occurs in the root section [4]:

σmax =
ρω2

2π
S, (1)

where ρ is the density the blade material, S = π(R2 − r2
b) is the area of the setting part of the impeller, and

R is the outer radius of the blade rim.
For turbine blades with a curved surface and a variable cross-sectional area, the magnitude and dis-

tribution of tensile stresses depend on the law of variation of the cross-sectional area. If the cross-sectional
area increases abruptly at the fixture, the maximum stresses occur near the middle cross section of the blade
rather than in the root section [4].
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The fiberglass blade of a VOVR-21 fan is characterized by a linearly variable cross-sectional area and
a slightly curved helicoidal aerodynamic surface. Therefore, in determining the stresses caused by centrifugal
forces, the blade is regarded as an orthotropic plate with a linearly variable thickness and a partly clamped
contour. The centrifugal force is assumed to be distributed over the bulk of the blade. The curvature of the
aerodynamic (external) surface is ignored.

The centrifugal-force components Fx and Fy (Fig. 2) corresponding to the x and y axes are given
by Fx = ρω2x and Fy = ρω2y cosϕ, respectively.

To calculate the stresses in the VOVR-21 blades subjected to centrifugal forces, we use:
— relations of Hook’s generalized law (σz = 0) for an orthotropic plate

εx =
σx
Ex
− νy
Ey

σy, εy =
σy
Ey
− νx
Ex

σx, γxy =
1
G
τxy; (2)

— strain-continuity equation

∂2εx
∂y2

+
∂2εy
∂x2

=
∂2γxy
∂x ∂y

; (3)

— equations of equilibrium

∂σx
∂x

+
∂τxy
∂y

+ Fx = 0,
∂τxy
∂x

+
∂σy
∂y

+ Fy = 0. (4)

In Eqs. (2)–(4), Ex and Ey are Young’s moduli of the orthotropic material of the blade in the longi-
tudinal and transverse directions, respectively, G is the shear modulus, and νx and νy are Poisson’s ratios in
the longitudinal and transverse directions, respectively.

With allowance for (2) and differentiation with respect to x and y, the strain-compatibility equation
(3) can be written in the form

2
Ex

∂2σx
∂y2

+
( 1
G
− 2νy
Ey

)∂2σy
∂y2

+
2
Ey

∂2σy
∂x2

+
( 1
G
− 2νx
Ex

)∂2σx
∂x2

+
1
G

(∂Fx
∂x

+
∂Fy
∂y

)
= 0. (5)

For the fiberglass blade of the VOVR-21 as a plate of variable thickness, Eq. (4) for unit forces has the
form

∂sx
∂x

+
∂txy
∂y

+ tFx = 0,
∂txy
∂x

+
∂sy
∂y

+ tFy = 0, (6)

where sx = tσx, sy = tσy, and txy = tτxy (t is the plate thickness). To satisfy Eqs. (6), we express the unit
forces sx, sy, and txy in terms of the stress function Φ(x, y):
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sx =
∂2Φ
∂y2
− tρω2 x

2

2
, sy =

∂2Φ
∂x2
− tρω2 y

2

2
cosϕ, txy = − ∂2Φ

∂x ∂y
. (7)

After appropriate manipulations, Eq. (5) becomes

1
Ey

∂4Φ
∂x4

+
( 1
G
− νy
Ey
− νx
Ex

) ∂4Φ
∂x2∂y2

+
1
Ex

∂4Φ
∂y4

=
[( νy
Ey
− 1

2G

)
(− cosϕ)

−
( νx
Ex
− 1

2G

)
− 1

2G
(1 + cosϕ)

]
tρω2. (8)

Using Eqs. (6), with allowance for (7) we express the stress components σx, σy, and τxy in the form

σx =
sx
t

=
1
t

∂2Φ
∂y2
− ρω2 x

2

2
, σy =

sy
t

=
1
t

∂2Φ
∂x2
− ρω2 y

2

2
cosϕ, τxy =

txy
t

= −1
t

∂2Φ
∂x ∂y

. (9)

The problem of stress determination in a blade under the action of centrifugal forces reduces to the
solution of Eq. (8) subject to the following boundary conditions (see Fig. 2):

— in the zone of the blade root (x = rb and y = 0),

σx = p =
1
t

∂2Φ
∂y2
− ρω2 x

2

2
;

— along the root (x = rb) and peripheral (x = rb + h) rims except for the point (rb, 0),

σx = 0,
1
t

∂2Φ
∂y2
− ρω2 x

2

2
= 0;

— along the axis of the blade (y = b0),

σy = 0,
1
t

∂2Φ
∂x2
− ρω2 y

2

2
cosϕ = 0;

— along the root (x = rb) and peripheral (x = rb + h) rims of the blade and along its axis (y = b0),

τxy = 0, −1
t

∂2Φ
∂x ∂y

= 0.

Equation (8) subject to the above-mentioned boundary conditions was solved by the finite-difference
method. Figure 3 shows the operator for a finite-difference grid with the step λ. Replacing the partial
derivatives in Eq. (8) by finite-difference relations, we obtain a finite-difference analog of the differential
equation at the point (x, y)

1
Ey

Φs −
( 4
Ey

+ 2b
)

Φk +
[
6
( 1
Ey

+
1
Ex

)
+ 4b

]
Φi −

( 4
Ey

+ 2b
)

Φl +
1
Ex

Φv

−
(

2b+
4
Ex

)
Φm −

(
2b+

4
Ex

)
Φn +

1
Ex

Φu + bΦo + bΦr +
1
Ey

Φt + bΦq + bΦp = a(xi, yi). (10)

We write the boundary conditions in the finite-difference form

1
tλ2

(Φn − 2Φi + Φm)− ρω2 r
2

2
= p,

1
tλ2

(Φn − 2Φi + Φm)− ρω2 x
2

2
= 0,

(11)
1
tλ2

(Φl − 2Φi + Φk)− ρω2 y
2

2
cosϕ = 0, − 1

4tλ2
(Φp − Φr + Φo − Φq) = 0.

Writing Eqs. (10) and (11) for all the internal and boundary points and taking into account the symmetry of
the blade (plate), we obtain a system of linear algebraic equations for Φ(xi, yi). Once the values of Φ(xi, yi)
are determined from the solution of this system, one can calculate the stresses σx, σy, and τxy at the nodal
points from formula (9).

A stress calculation was performed for a blade made from a DSV-4-R-2M press-material of quality
“P” with a volume fraction of the filler equal to 0.65. The mechanical characteristics of the material are as
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Fig. 3 Fig. 4

follows: the density is ρ = 1.7 g/cm3, the tensile strength is σt = 75 MN/m2, the compressive strength is
σc = 13,000 MN/m2, Young’s moduli in the longitudinal and transverse directions are Ex = 52.1 GN/m2 and
Ey = 14 GN/m2, respectively, the shear modulus is G = 6.3 GN/m2, and Poisson’s ratios in the longitudinal
and transverse directions are νx = 0.056 and νy = 0.21, respectively.

Figure 4 shows the stress distribution over the length of the blade. Curves 1 and 2 are plotted with
the use of calculation results (curve 1 refers to our calculation and curve 2 to the that performed by the
engineering method [1]). The stresses are normalized to the maximum stress in the root section of the blade
σ∗ = rcMω2/A, where M is the mass of the blade, A is the cross-sectional area in the zone of the blade root,
and rc is the distance from the axis of rotation of the impeller to the center of gravity of the blade. The
points refer to the experimental data obtained by V. V. Vasil’ev at the Fedorov Institute of Rock Mechanics
and Technical Cybernetics (Donetsk, Ukraine).

It follows from the results shown in Fig. 4 that the stresses calculated by the method proposed in this
paper differ from the experimental values by no more than 11% on average. This error in determining the
stresses is admissible in engineering calculation of fan blades. The maximum error in determining the stresses
amounts to 19% and corresponds to the middle sections of the blade (r − rb)/h = 0.4–0.5. The use of the
engineering method [1] in determining the stresses in fiberglass blades leads to an average error of 26%.

To calculate the stresses in the cross sections of fiberglass blades with higher accuracy, one should take
into account the nonlinear law of variation of the cross-sectional area of the blade and the structure of the
composite material.

The model proposed allows one to choose rational variants of the blade design for a VOVR-21 impeller
and similar blade machines.
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